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Abstract

Maritime trade plays a key role in the global economy and recent technological developments have 

accelerated maritime logistics.  However, this increase in maritime trade has had an impact on port 

performance, leading to port congestion in some regions. Few researches employing AIS data has 

explored the marine traffic congestion, hence the development of a system that makes metrics on 

ports more accessible is needed. This work employs an innovative methodology to analyze the port 

congestion level on the port of Rio de Janeiro. From the Automatic Identification System (AIS) data, 

three algorithms were used to find the convex hull area, the geolocation area, and the average vessel 

proximity. These algorithms were used to calculate the Port Congestion Indicators (PCIs): i) Spatial 

Concentration; ii) Spatial Density; iii) Average Service Time. Then, Machine Learning techniques were 

employed to cluster these indicators into low, medium, and high congestion levels. As a result, this 

process identified the periods when the port is most congested and the centroids of these clusters 

can be used to predict the behavior of port congestion levels. These indicators provide resources for 

better management and can motivate actions such as the redistribution of ship loading and 

unloading locations, improving the port performance measurement.

1. Introduction 
Maritime trade represents around 90% of the global 

volume trade.  Therefore, the port's performance is 

crucial to sustaining economic growth, (AbuAlhaol, 

Falcon, Abielmona, & Petriu, 2018). However, this 

increase in maritime trade has produced an impact 

on the Ports efficiency in some regions. In 

December 2019, for example, ships operated liquid 

chemical bulk in the Port of Santos had to wait more 

than 10 days for a docking opportunity, causing 

losses around US$ 35.000 per day for each ship, 

(Rosssi, 2019). 

This situation is called port congestion, in which 

vessels must wait at areas close to the Ports for load 

or unload. In most cases, the port's capacity does 

not correspond to the demand, and the vessels, 

generally, must wait at anchorage areas before 

accessing the port, (MarineTraffic, 2020). This 

impact is not restricted to any part of the world, it 

also affects ports on Asia, North Africa, Northern 

Europe, and United States, (Saeed, Song, & 

Andersen, 2018). 

Port congestion is an important issue from an 

economic and efficiency point of view. Because it 

results, not only, in longer waiting times and low 

service levels for vessels, but it also contributes to 

the decrease in competitiveness and demand 

(Saeed, Song, & Andersen, 2018). Understanding 

the aspects that influence congestion is essential for 

port management. However, traditional traffic 

analyzes are, generally, carried out through surveys 

that include: visual observations, radar, and aerial 
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photographs, being extremely costly, (Zhang, Men, 

& Fang Fwa, 2019). 

Currently, there are advanced methods for 

collecting vessel traffic data, such as Vessel Traffic 

Services (VTS) and Automatic Identification System 

(AIS). The VTS is a maritime traffic monitoring 

system established and operated by port 

authorities. This technology uses radar, closed-

circuit television, and high-frequency 

radiotelephony to track ship movements in a limited 

geographical area. However, the coverage of the 

VTS system is quite limited, as well as being 

expensive to access and process the data, since they 

are confidential and protected by maritime 

authorities. Also, the data information is limited and 

excludes important characteristics of the vessels, 

such as the type of vessel and draft (Meng, Weng, & 

Li, 2014). 

The second type of data is the Automatic 

Identification System (AIS). AIS is a vessel tracking 

system that provides regular ship data updates. 

Static information (name of the vessel, type of 

vessel, length, breadth, etc.) and dynamic 

information (speed, navigation situation, direction, 

position, etc.) of the vessels can be exchanged 

electronically between AIS receiving stations 

(onboard, on land, or by satellite), (AbuAlhaol, 

Falcon, Abielmona, & Petriu, 2018). AIS data does 

not have the limitations of VTS data and, due to its 

informative integrity, can be used to analyze 

incidents, such as ship collisions. This data ensures 

greater reliability of navigation information and 

comes the analysis of maritime traffic more 

accurate, (Zhang, Men, & Fang Fwa, 2019), and 

(Meng, Weng, & Li, 2014).  

However, most studies performed with AIS data 

have focused on specific areas such as monitoring, 

tracking, and security of ships, accident prevention, 

including collision risks, noise levels, or ship 

emissions, (Shelmerdine, 2015). Few researches 

employing AIS data have explored marine traffic 

congestion. Inspired by the work of  Craighead et al. 

(2007), AbuAlhaol et al. (2018) proposed three “Big 

Data-Driven” indicators to measure the marine 

traffic congestion: i) the spatial density of seaports; 

ii) the spatial complexity; and iii) the average 

waiting time for ships, (Craighead , Blackhurst, 

Rungtusanatham , & Handfield, 2007), and 

(AbuAlhaol, Falcon, Abielmona, & Petriu, 2018). 

From these indicators, the k-means clustering 

technique was used to identify the months of the 

year in which the selected ports were more or less 

congested. These Port Congestion Indicators (PCIs) 

provide resources for management and can 

motivate actions such as the redistribution of ship 

loading and unloading locations and better 

anchorage planning, (AbuAlhaol, Falcon, 

Abielmona, & Petriu, 2018). 

This work employs a variation of the methodology 

proposed by AbuAlhaol et al. (2018) to analyze the 

port congestion level of the Port of Rio de Janeiro. 

Over one year, AIS data were collected and analyzed 

to calculate Port Congestion Indicators (PCIs): i) 

Spatial Concentration; ii) Spatial Density; iii) 

Average Service Time. Machine learning techniques 

were applied to these indicators to identify the 

weeks in which the port is most congested, allowing 

predict the future status. 

2. Database 
The Safety of Life at Sea (SOLAS) Convention 

published in 2002 by the International Maritime 

Organization (IMO) required that: i) all marine 

vessels over 300 GT (gross tonnage) on an 

international voyage; ii) all cargo vessels greater 

than 500 GT; iii) all passenger vessels irrespective of 

size, to be fitted with an Automatic Identification 

System (AIS) as standard by 2004, (Shelmerdine, 

2015).  

The Automatic Identification System (AIS) is a vessel 

tracking system that provides regular updates on a 

vessel’s movement and other relevant ship voyage 

data to other parties, (AbuAlhaol, Falcon, 

Abielmona, & Petriu, 2018). The AIS was developed 

to avoid ship collision accidents, and it has been 

used in maritime transportation for over two 

decades. Originally, AIS data was highly regionalized 

and difficult to collect, because AIS communication 

was limited to very-high-frequency (VHF) radio 

wave range, which only covered 10–20 nautical 

miles, (Yang , Wang, & Jia, 2019).  

Since 2008, satellites equipped with AIS receivers 

have been able to receive AIS data transmitted by 

onboard AIS transceivers worldwide. At present, AIS 

data can be easily collected from commercial 

websites that provide access to AIS databases. With 

the constantly improving quality and completeness 

of AIS data, the applications of AIS data have 

expanded from navigation safety to include many 

other aspects too, (Yang , Wang, & Jia, 2019). 

The AIS system uses a transponder that transmits 

and receives in VHF. It also includes a GPS receiver 

that records the position and movement details. 

Transmission and reception are carried out 

continuously and autonomously, and the use of this 
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technology does not entail removing the preexisting 

systems, (Serry, 2018).  

The information contained in each AIS data can be 

divided into the following two main categories: i) 

Dynamic Information (such information is 

automatically transmitted every 2 to 10 seconds 

depending on the vessel's speed and course while 

underway and every 6 minutes while anchored from 

vessels equipped with Class A transponders.); ii) 

Static & Voyage related Information (such 

information is provided by the subject vessel's crew 

and is transmitted every 6 minutes regardless of the 

vessel's movement status.), (MarineTraffic, 2020). 

The database used in this work is the AIS messages 

transmitted by ships on the region of the port of Rio 

de Janeiro. The data consists of the period of 

January 2018 to April 2018 and September 2018 to 

March 2019.  To become the analysis more 

accurate, the weeks in which AIS data were not 

transmitted, were removed. 

3. Methodology 
This section describes the methodology used in this 

work. The first step is to calculate the geospatial 

algorithms: convex hull area, geolocation area, and 

average vessel proximity. Then, these algorithms 

will be used to calculate the Port Congestion 

Indicators (PCIs): spatial concentration, spatial 

density, and average service time. Finally, machine 

learning techniques were employed to cluster these 

indicators, to extract useful information. 

3.1. Geospatial Algorithms 

A. Convex Hull Area 

The convex hull of a set of points is the smallest 

convex set that contains the points, it is a 

fundamental construction for mathematics and 

computational geometry, (Barber, Dobkin, & 

Huhdanpaa, 1996). Quickhull is an algorithm for 

computing convex hulls that takes a divide-and-

conquer approach. The idea is to partition the 

problem into subproblems of roughly equal size, 

solve each subproblem recursively, and finally 

combine the individual results into a whole solution, 

(Mucke, 2009). 

The convex hull of a set of finite planar points is a 

polygon. Since any point in the convex hull can be 

expressed as a convex combination of its vertices, 

for simplicity, we use the phrase “convex hull” to 

mean “the set of vertices of the convex hull”,  

(Nguyen & Le, 2015). The port convex hull area is 

defined as the area that encloses all vessels in the 

smallest perimeter fence, (AbuAlhaol, Falcon, 

Abielmona, & Petriu, 2018).  

The input to the convex hull algorithm is the latitude 

and longitude of the vessels from AIS static and 

dynamic messages. The first step is to filter: a) the 

latitude and longitude of the port of Rio de Janeiro, 

b) the navigational status moored or in anchor, and 

c) the speed over ground below 5 knots. The 

navigational status is manually set by the crew and 

there are sixteen statuses (e.g., 1 is for in anchor 

and 5 is for moored). The speed over ground is in 

nautical miles per hour (knots), and Abualhaol et al. 

(2018) considered the messages with a reported 

speed below 5 knots. 

The convex hull area and vertices were calculated 

using Python’s SciPy open-source library, and Figure 

1 was generated on Map Polygon Tool. As a result, 

throughout January 2018 to April 2018 and 

September 2018 to March 2019, the convex hull 

area was 138,09 𝐾𝑚2. The detailed process over 

the entire period is provided on Algorithm 1, see 

Table 1. 

Table 1: Algorithm 1 about Convex Hull Area. 

Algorithm 1: Convex Hull Area 

Data: AIS static and dynamic messages. 
Filter:  
a) Latitude and longitude of the port of Rio de 
Janeiro;  
b) Navigational status moored or in anchor;  
c) Speed over ground below 5 knots.  

Input: Latitude and longitude of the vessels. 
Initialization: 
1. Conversion of latitude and longitude to 𝑥 and 
𝑦. 
2. Calculation of the convex area. 
Output: Convex Area in 𝐾𝑚2. 

 
Figure 1: Convex hull area of the port of Rio de Janeiro. 
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B. Geolocation Area 

The geolocation area is related to the geohash 

system invented in 2008 by Gustavo Niemeyer. 

Geohash is an address code that reduces two-

dimensional latitude and longitude information to a 

unique one-dimensional string for each point on 

earth with a given precision. This system uses a 

string to represent longitude and latitude 

coordinates and does not represent a point, but a 

region, (Xiang, 2019).  

It is a geocoding method to encode geographic 

coordinates into a short string of digits and letters 

delineating an area on a map, which is called a cell, 

with varying resolutions. The more characters in the 

string, the more precise the location. Geohashes 

use Base-32 alphabet encoding, the first character 

in a geohash identifies the initial location as one of 

the 32 cells. This cell will also contain 32 cells, and 

each one of these will contain 32 cells (and so on 

repeatedly). Adding characters to the geohash sub-

divides a cell, effectively zooming in to a more 

detailed area, (PubNub). 

The precision factor determines the size of the cell. 

For instance, a precision factor of one creates a cell 

5,000km high and 5,000km wide, a precision factor 

of five creates a cell 4.89km high, and 4.89km wide, 

and a precision factor of seven creates a cell 153m 

high and 153m wide, (PubNub). Abualhaol et al. 

(2018) use precision-7 (PREC = 7) geohashes, to 

calculate the geohash area. 

In our work, we split the convex area into cells of 

153𝑚 high and 153𝑚 wide (0,023409 𝐾𝑚2), and 

the coordinates of these cells were used to identify 

which area is been used by the ships. Each cell can 

only be activated once in the period if there is at 

least one vessel within the coordinates of that cell. 

Then, to calculate the geolocation area, we 

considered the area of each activated cell over the 

period. The detailed process of each week is 

provided on Algorithm 2, see Table 2 

Table 2: Algorithm 2 about Geolocation Area. 

Algorithm 2: Geolocation Area 

Data: AIS static and dynamic messages. 

Input: Latitude and longitude of the vessels. 
Initialization: 
1. Split the convex area into cells of 153𝑚 high 
and 153𝑚 wide (0,023409 𝐾𝑚2). 
2. Identify which cells is been used by the vessels 
over the period.  
3. Calculate the area of the activated cells over 
the period.  
Output: Geolocation area in 𝐾𝑚2. 

C. Average Vessels Proximity 

When working with latitude and longitude, it is 

sometimes helpful to calculate distances between 

points. But simple Euclidean distance doesn’t cut it 

since we have to deal with a sphere, or an oblate 

spheroid to be exact. So, we have to take a look at 

geodesic distances, (Janakiev, 2018). The geodesics 

on a surface are, locally at least, the curves of the 

shortest distance on the surface between any two 

points on that surface. In geodesy, the geodesic is 

well understood to refer to the shortest surface 

distance between two points on the surface of the 

ellipsoid, or synonymously the spheroid, (Thomas & 

Featherstone, 2005). There are various ways to 

handle this calculation as The Great-circle distance, 

the Haversine formula, and Vincenty’s formulae. 

The great circle or orthodromic distance is the 

shortest distance between any two points on a 

sphere measured along a path on its surface. 

Because the geometry of the sphere is different 

from ordinary Euclidean geometry, the equations 

for distance take on a different form. The distance 

between two points in Euclidean space is the length 

of a straight line from one point to the other. On a 

sphere, however, there are no straight lines. In non-

Euclidean geometry, straight lines are replaced by 

geodesics. On the sphere, geodesics are the great 

circles, (Porcu, Bevilacqua, & Genton, 2016). 

The haversine formula is a method used to calculate 

the distance from one place to the destination. This 

formula calculates the distance between two points 

(longitude and latitude) based on the length of the 

straight line. The haversine formula is commonly 

used in navigation problems because it can provide 

a large circle distance between two points on the 

surface of the globe regardless of the height of the 

hill and the depth of the valley on the surface of the 

earth, (Rezania Agramanisti & Febriyanti, 2020).  

Vincenty’s formulas are typically used for the 

calculation of the direct and inverse geodetic 

problems. The direct problem is: given the geodetic 

latitude and longitude (φ1, λ1) of a point on the 

surface of the ellipsoid, along with the starting 

azimuth α1 and geodesic distance 𝑠, find the 

finishing point (φ2, λ2) and (reverse) azimuth α2 of 

the geodesic at (φ2, λ2). The inverse problem is: 

given two points (φ1, λ1) and (φ2, λ2) on the 

surface of the ellipsoid, find the geodesic distance 𝑠 

between them, and the forward azimuth α1 and 

reverse azimuth α2 of the geodesic at  (φ1, λ1) and 

(φ2, λ2) respectively, (Thomas & Featherstone, 

2005) 
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The average vessel proximity was calculated using 

Phyton's Pyproj open-source library, which 

performs forward and inverses geodetic algorithms. 

The input to the algorithm is the latitude and 

longitude of the vessels. The first step is a 

combination, without repetition, of the vessel's 

coordinates. Then, the algorithm calculates the 

distance between the coordinate pairs. The 

interquartile range (IQR) method, was applied, on 

the results, to remove the outliers. The detailed 

process of each week is provided on Algorithm 3, 

see Table 3. 

Table 3: Algorithm 3 about Average Vessel Proximity 

Algorithm 3: Average Vessel Proximity 

Data: AIS static and dynamic messages. 

Input: Latitude and longitude of the vessels. 
Initialization: 
1. Combination, without repetition, of the 
vessel’s coordinates. 
2. Calculation of the distance between the 
coordinate pairs. 
3. Interquartile range (IQR) method to remove 
outliers. 
4. Calculation of the average vessel’s proximity. 
Output: Average vessel proximity in 𝐾𝑚 

 

3.2. Port Congestion Indicators 

A. Spatial Concentration 

Spatial Concentration (SC) is the normalized port 

congestion indicator, to measure the spatial 

distribution of ships within the convex area. It is 

calculated by dividing the Convex Hull Area (Convex 

Area) by the Average Vessels Proximity (∆), as 

presented in Algorithm 1 and Algorithm 3, 

respectively.  

Equation 1 presents the analytical formulation of 
the Spatial Concentration Indicator where the 
subscript 𝑖 indicates the aggregation period from a 
set of all periods (in this work 𝑖 will be a week index 
and 𝐼 will be a set of 11 months in 2018 and 2019, 
𝑖 ∈ 𝐼.). The Spatial Concentration is normalized on 
the maximum historical value (i.e.,  𝑚𝑎𝑥 {𝑆𝐶𝑖}, for 
𝑖 ∈ 𝐼) and therefore is unitless in the range [0, 1]. 
We considered that spatial concentration increase 
as the relationship between the convex hull area 
and average vessel proximity grows. For the same 
average proximity but with a larger convex area the 
spatial concentration increase.  

 

Equation 1: Spatial Concentration Indicator 

 

𝑆𝐶(𝑖) =
𝐶𝑜𝑛𝑣𝑒𝑥 𝐴𝑟𝑒𝑎(𝑖) ∆(𝑖)⁄

𝑚𝑎𝑥 
𝑖 ∈ 𝐼

{𝐶𝑜𝑛𝑣𝑒𝑥 𝐴𝑟𝑒𝑎(𝑖) ∆(𝑖)⁄ }
 

 
B. Spatial Density 

Spatial Density (SD) is the normalized port 

congestion indicator, to measure the area that is 

been used by the vessels. It is calculated by dividing 

the Geolocation Area (Geo Area) by the Convex Hull 

Area (Convex Area), as presented in Algorithm 2 and 

Algorithm 1, respectively. 

We considered that spatial density increase as the 
relationship between the geolocation area and the 
convex area grows. For the same convex area but 
with a larger geolocation area the spatial density 
increase.  
Equation 2 presents the analytical formulation of 
the Spatial Density Indicator. It is normalized by the 
maximum reachable value in the periods of 
interests (i.e., 𝐼), and therefore is unitless in the 
range [0;  1]. 

Equation 2: Spatial Density Indicator 

𝑆𝐷(𝑖) =
𝐺𝑒𝑜 𝐴𝑟𝑒𝑎(𝑖) 𝐶𝑜𝑛𝑣𝑒𝑥 𝐴𝑟𝑒𝑎(𝑖)⁄

𝑚𝑎𝑥 
𝑖 ∈ 𝐼

{𝐺𝑒𝑜 𝐴𝑟𝑒𝑎(𝑖) 𝐶𝑜𝑛𝑣𝑒𝑥 𝐴𝑟𝑒𝑎(𝑖)⁄ }
 

 
C. Average Service Time 

The third Port Congestion Indicator (i.e., Average 

Service Time) represents the average time needed 

by vessels to enter, load/offload, and exit the port 

over the period. We define 𝑡𝑛 as the time needed 

for a vessel to get served and leave the port, 𝑁𝑖  the 

number of unique vessels (based on the reported 

MMSI numbers) in the 𝑖𝑡ℎ  aggregation period. 

The Average Service Time (AST) is the normalized 
average time for all cargo vessels in the 𝑖𝑡ℎ period 
as given in Equation 3. It is normalized on the 
maximum value and therefore is unitless in the 
range [0;  1]. 

 Equation 3: Average Service Time Indicator 

𝐴𝑆𝑇(𝑖) =  

1
𝑁𝑖

 𝑥 ∑ 𝑡𝑛
𝑁𝑖
𝑛=1

𝑚𝑎𝑥 
𝑖 ∈ 𝐼

{
1
𝑁𝑖

 𝑥 ∑ 𝑡𝑛
𝑁𝑖
𝑛=1 }

 

 



6 

3.3. Knowledge Discovery in Database 
Knowledge discovery in database (KDD) is the 

nontrivial extraction of implicit, previously 

unknown, and potentially useful information from 

data. The approaches are taken, however, are quite 

diverse. Most are based on machine learning 

methods that have been enhanced to better deal 

with issues particular to discovery in databases 

(Frawley, Piatetsky-Shapiro, & Matheus, 1992). The 

grand challenge of KDD is to automatically process 

large quantities of raw data, identify the most 

significant patterns, and present these as 

knowledge appropriate for user's goals (Matheus, 

Chan, & Piatetsky-Shapiro, 1993).  

To extract useful information, one of the most 

popular unsupervised machine learning algorithms 

is the k-means, for clustering. The k-means 

procedure consists of simply starting with k groups 

each of which consists of a single random point, and 

thereafter adding each new point to the group 

whose mean the new point is nearest. After a point 

is added to a group, the mean of that group is 

adjusted to take account of the new point. Thus, at 

each stage, the k-means are, in fact, the means of 

the groups they represent (MacQueen, 1967).  

In our work, the k-means is used to cluster the port 

congestion indicators: spatial concentration, spatial 

density, and average service time. We used the 

Scikit-Learn open-source library to perform the k-

means clustering with 𝐾 =  3 to cluster the 

aggregated periods (weeks) into three clusters. The 

purple color cluster (HIGH) is the closest to the (1; 

1; 1) which represents the highest congestion 

cluster (i.e., the closest to maximum PCI values). 

The yellow cluster (MEDIUM) has moderate level 

congestion and finally, the low congestion level 

cluster is identified in blue (LOW), see Figure 2. 

Figure 2: Port Congestion Indicators Clustering (K = 3) 

4. Results 
In this section, we present the port congestion 

indicators results for the port of Rio de Janeiro.   

Table 4 represents the main results of the indicators 

over the period.  The months were divided into four 

weeks, being 1 for the first week and 4 for the last. 

The weeks in which AIS data were not transmitted, 

were removed.    

Table 4: Port Congestion Indicators of Rio de Janeiro. 

Week MM/YY SC  SD   AST  k-means 

3 Jan/2018 0,87 0,91  0,85 HIGH 

4 Jan/2018 0,80 0,83  0,77 MEDIUM 

1 Feb/2018 0,87 0,88  0,71 MEDIUM 

4 Feb/2018 0,84 0,63  0,36 LOW 

1 Mar/2018 0,87 0,47  0,11 LOW 

2 Mar/2018 0,84 0,94  0,95 HIGH 

3 Mar/2018 0,84 0,85  0,78 MEDIUM 

1 Apr/2018 0,83 0,90  0,89 HIGH 

3 Apr/2018 0,77 0,69  0,69 MEDIUM 

1 Sept/2018 0,82 0,84  0,89 HIGH 

3 Sept/2018 0,80 0,88  0,77 MEDIUM 

3 Oct/2018 0,82 0,92  0,87 HIGH 

4 Oct/2018 0,82 0,87  0,73 MEDIUM 

1 Nov/2018 0,83 0,88  0,69 MEDIUM 

3 Nov/2018 0,80 0,99  0,80 HIGH 

1 Dec/2018 0,84 0,93  0,84 HIGH 

3 Dec/2018 0,94 0,46  0,14 LOW 

2 Jan/2019 0,90 0,46  0,06 LOW 

3 Jan/2019 0,82 0,94  0,78 HIGH 

1 Feb/2019 0,84 1,00  0,88 HIGH 

4 Feb/2019 0,91 0,82  0,59 MEDIUM 

2 Mar/2019 0,85 0,83  0,65 MEDIUM 

3 Mar/2019 1,00 0,43  0,07 LOW 

Both Figure 2 and Table 4 represents the port 

congestion indicators from January 2018 to April 

2018 and September 2018 to March 2019.  Most of 

the months have weeks which is identified as the 

most severe congested cluster (spatial 

concentration, spatial density, and average service 

time close to 1,1,1). Few weeks presents low 

congestion levels, where may have been some 

technical issues receiving AIS data in Feb/2018, 

Mar/2018, Dec/2018, Jan/2019, and Mar/2019.  

Nevertheless, both indicators of spatial 

concentration and spatial density did not show 

significant variations, and such indicators could 
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motivate the port of Rio de Janeiro authority to take 

special consideration in the high congested weeks 

redistributing the anchored vessels and widen the 

port area to decrease those indicators. On the other 

hand, to decrease the average service time, it may 

need to allocate more resources to speed up 

loading/unloading ships.  

In general, the port of Rio de Janeiro is highly 

congested, and to decrease those indicators and 

make it more competitive is important to consider a 

redesign of operations and internal processes as 

well as continuing to monitor port performance.   

5. Conclusions 
Three geospatial algorithms: geohash area, convex 

hull area, and vessel average proximity were used 

to calculate the Port Congestion Indicator (spatial 

concentration, spatial density, average service time) 

from January 2018 to April 2018 and September 

2018 to March 2019.  

The k-means clustering with 𝐾 =  3 was utilized to 

characterize congestion levels of the port of Rio de 

Janeiro into low, medium, and high. As a result, 

around 47%, over the period, the port has high 

congestion (port congestion indicators close to 

1,1,1) and a 39% medium. The centroids of these 

clusters could be, also, used as the basis to predict 

the behavior of the port in future weeks.  

The k-means clusters and the port congestion 

indicators bring actionable information to the port 

of Rio de Janeiro to understand the aspects that 

influence port congestion. However, it is important 

to improve the proposed indicators for a reviewed 

advanced model.  

The proposed Indicators are reactive and based on 

historical AIS data. Nonetheless, it can be applied 

provocatively to classify port congestion levels 

based on a real-time AIS data stream. Apache Spark 

may be required to fast and distributed engine for 

largescale data processing. It provides distributed 

machine learning capabilities and can be 

reconfigured to enable real-time data processing. 

Might be interesting to compare different ports for 

port authorities and stakeholders to start 

investigating why port congestion is occurring. Is 

the port overutilized and should its operation be 

improved or are there other reasons such as 

weather conditions or internal processes that need 

to be better accounted for? 

This congestion is increasing costs for shippers and 

importers on the port of Rio de Janeiro, and the 

model presented could help other ports in the 

region. Few studies, in Latin America, of port 

congestion, were developed, thereby it is a 

contribution that can be useful for neighboring 

ports since the methodology can be easily applied 

to other study areas. 

These surveys expand knowledge in the field since 

the quantification of port congestion provides 

resources to port authorities and stakeholders for 

better management, improving the port logistics 

operations, and reducing the costs. 
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